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Heliostat Reflection Equations 

Abstract 
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 The Sun can be reflected to a single, unmoving target position by the action of a 
computer-based motion controller using mathematical equations to relate the mechanical 
position of a mirror to the combination of the Sun’s position and a fixed target receiver. 
The geometrical and mathematical relationships involved are diagramed and defined.



Heliostat Reflection Equations 

Plane of Reflection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 As the Earth rotates, producing the apparent motion of the Sun through the sky, 
the three objects: the Sun, the Receiver (target) and the Heliostat (actually their center 
points) define the plane of reflection. The apex of this rotating triangle is the Sun, while 
the base of the triangle is fixed between the target and heliostat. It is in this plane that the 
resultant heliostat position vector must lay halfway between the Sun and the target to 
properly reflect the sunbeam to a fixed target. 
 Though apparently somewhat extreme, the spherical coordinate system is the 
simplest to use for the necessary computations. The algebra involved in manipulating the 
resulting equations is much less complicated than when rectangular coordinates are used. 
 When setting up the diagrams for working through the problem, the heliostat is 
used as the center of the sphere. From that vantage point the position vector of the Sun 
can be computed from equations* using the local solar time, date, time zone, latitude and 
longitude of the heliostat pedestal. The target position vector is constant since neither the 
heliostat pedestal nor the target moves about although there is some target vector offset 
due to the motion of the center of the mirror when the surface of the mirror does not lay 
at the center of rotation. 
 Due to the extreme distance of the Sun, its apparent angular position does not 
change when there is translational motion of a few feet or even a mile, however, small 
translations of the same few feet will produce noticeable changes in the apparent target 
vector at the finite distances found in a solar field. A translation of 3 feet will produce a 
target offset of just over 0.2 degrees at 800 feet, which is more than enough to be 
observable and affect the beam position on the target. 
 
* See Appendix A. 
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 The following diagram highlights the ‘working triangle’, actually a segment of the 
surface of a sphere that will be used to build the equations of reflection. Zenith is a 
rotation about the center of the sphere and constitutes a ‘side’ measurement of the 
triangle though actually an angular value. Corner angles, used in the intermediate 
calculations, are rotations about a particular vector emanating from the center of the 
sphere and piercing the surface. Azimuth is a special case of rotation about a vector 
piercing the surface of the sphere where Zenith equals zero. Zenith can be converted to a 
‘normal’ reference by the conversion: Elevation (in degrees) equals 90 minus Zenith.  
 To relate this ‘free-body’ diagram to reality, the vector annotated as ‘Zenith = 0’ 
is a vector emanating from the center of the Earth and piercing the surface at a particular 
Latitude and Longitude. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In manipulating the values indicated by the ‘working triangle’ it is necessary to 
enlist the use of the law of Sines and the law of Cosines. These geometric laws relate the 
‘sides’ of a triangle and the opposing subtended angles. By systematic usage of these 
laws, the unknown quantities initially defined can be algebraically calculated such that 
the proper heliostat position vector can be evaluated for any given Sun position vector 
given a particular target vector. The plane of reflection rotates about the target vector, its 
orientation defined by the Sun position vector. 
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Heliostat Reflection Equations 

The law of Sines states that each of the three ratios of a side and its opposing subtended 
angle are equal. The law of Cosines defines the functional relationship between a ‘side’ 
or angle and the other two ‘sides’ or angles and its opposing counterpart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In each case, one of these two relationships can be used to determine an unknown 
quantity involved in the reflection equation. There are six starting quantities. In the 
fundamental reflection equations, the Sun position vector (α) and the target vector (β) are 
known and the heliostat position (δ) vector must be determined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In the case of establishing the target vector (targeting), the Sun position vector 
and heliostat vector are known and the target vector must be determined. 
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Heliostat Reflection Equations 

 In the first step, the angle between the Sun and the target, γz, must be determined 
so that the halfway point can ultimately be computed. This angle is designated with a ‘Z’ 
subscript because it is a rotation about the center of the sphere. The intermediate angle, 
γa, is so designated because it is a rotation about a radial vector at the surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

αa 
βa 

αz 

βz γz γa 

 

Using law of Cosines: 
Cos γz = Cos αz Cos βz + Sin αz Sin βz Cos (αa - βa) 
 
Then evaluate Cos-1 (Cos γz) to get γz. 
 
Using the law of Sines:  
Sin (αa - βa)      Sin γa 
     Sin γz            Sin αz 
 
Solve for: Sin γa =  Sin αz 
 
And evaluate Sin-1 (Sin γa) to get γa. 

= 
Sin (αa - βa) 
     Sin γz 
 
 
 

 
 The second step is to derive the heliostat vector given the common angle γa and
the intermediate value γ , which is divided by 2 to get the half-angle of reflection. 
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Heliostat Mirror Offset Corrections 
 
 The motion of the mirror about its azimuth and elevation pivots moves the focal 
line through a sinusoidal pattern across the target due to the offset of the mirror surface 
from the rotational centerlines usually required by inexpensive structural systems. This 
pattern is predictable though not entirely determinant (second order angular effects apply) 
and can be corrected with a minimum of source code overhead and data collection.  
 Using the following diagrams to illustrate a typical geometry and identify 
parameters, a mathematical model can be derived that will work easily with the 
SolarTrak® control code. 
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Figure 1: Elevation View – Mirror Position 
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Figure 2: Top View – Mirror Offset 
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Heliostat Reflection Equations 

 Although the traditional notation for heliostat (pedestal) and tower position has 
been in X-Y-Z coordinates, the SolarTrak requires only the relative bearing of the target 
to the HUB (defined as the intersection of the Azimuth center-of-rotation and the vertical 
height of the Elevation axis-of-rotation).  
 The location of the target is defined as the Azimuth bearing of the center of the 
target plus the Zenith depression from vertical. This vector offset is stored in the semi-
permanent (reprogrammable) area of the SolarTrak® memory. The normal interpretation 
of this offset would be from the center of focus of the mirror that would ideally coincide 
with the HUB. 
 As reality dictates, the actual focal line is subject to the sinusoidal translation 
effects induced by the offsets: AzimPivot_R, PivotRefl_R, PivotRefl_Z, Target_R and 
Target_Z, while the system rotates through its range of motion. 
 It is not necessary to keep all the raw parameters in the SolarTrak® memory, only 
the resultant vectors. Target_R is the result of Target_X and Target_Y and can be further 
combined with Target_Z to yield the actual distance of the target from the hub. The 
mirror center can also be represented as a vector with a magnitude and offset angle. 
 Once these values are produced and entered into the SolarTrak® memory, the 
translation error can be computed as a function of the current mechanical position at any 
given moment and a correction angle computed for the Azimuth and Zenith target 
bearing. Since the primary corrections are relatively small, secondary corrections should 
not be necessary but could be accomplished with iterative calls to the correction 
subroutine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Cr and Cz are the resultant components of t
current reflective half-angle zenith component, Sr, t
angular offset of the center from the elevation pivot
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Heliostat Reflection Equations 

 The zenith component of the offset, dTZ, is based on the projection of the mirror-
offset vector, C, with respect to the ideal beam vector. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The relative offset, dZ, is determined by: 
 
θZ = Atan (Cr / Cz) 
dZ = C * Sin (TZ - θZ) 
 
 Then the angular offset, dTZ, determined by: 
 
TD = Sqrt (Target_X2 + Target_Y2 + Target_Z2) 
dTZ = Atan (dZ / (TD - C * Sin (TZ - θZ))) 
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Figure 6: Free-Body Diagram of Azimuth Offset 
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Figure 5: Free-Body Diagram of Elevation Offset 
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Heliostat Reflection Equations 

Appendix A:  
 
Equation of Apparent Sun Motion 
 
Compute Greenwich Mean Time: 
 
    GMT = Zone + Hour + (Min / 60.0) + (Sec/3600.0) 
 
Compute the Julian Date: 
 
    JD = (367 * Year - (7 * (Year + ((Mon + 9) / 12)) / 4) + 
           (275 * Mon / 9) + Day) + 1721013.5 + GMT / 24.0 
 
Compute ‘Little T’: The number of days from 2000 AD. (was negative until 2000) 
 
    t = JD - 2451545.0 
 
Compute ‘Big T’: Centuries since 1900 AD. 
 
(FRC takes the fractional portion of the result and discards the whole numbers) 
 
    T = 1.0 + t / 36525.0 
 
  ΩM = 2π * FRC (5.347343 - 0.00014709391 * t) 
 
    LS = 2π * FRC (11.779072 + 0.00273790931 * t) 
 
    LM = 2π * FRC (150.606434 + 0.03660110129 * t) 
 
    GS = 2π * FRC (10.993126 + 0.00273777850 * t) 
 
    G2 = 2π * FRC (18.140023 + 0.00445036173 * t) 
 
    G4 = 2π * FRC (6.053856 + 0.00145561327 * t) 
 
    G5 = 2π * FRC (1.056531 + 0.00023080893 * t) 
 
    Ε = (84428.0 - 47.0 * T + 9.0 * Cos (ΩM)) / (3600 * 180) / π) 
 
  dλ =  -17.0 * Sin (ΩM) / ((3600 * 180) / π) 
 
    ST = 0.2769194 + (1.07523148e-6 * T  + 100.002136) * T 
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Legend for following equations: 
rLat, rLong = Latitude, Longitude in radians 
 
PL = [6910.0 * Sin (GS)  + 72.0 * Sin (2.0 * GS) - 17.0 * T * Sin (GS) 
            -  7.0 * Cos (GS - G5) + 6.0 * Sin (LM - LS)  
 +  5.0 * Sin (4.0 * GS - 8.0 * G4 + 3.0 * G5) 
            -  5.0 * Cos (2.0 * GS - 2.0 * G2)  - 4.0 * Sin (GS - G2) 
            +  4.0 * Cos (4.0 * GS - 8.0 * G4 + 3.0 * G5) 
            +  3.0 * Sin (2.0 * GS - 2.0 * G2) - 3.0 * Sin (G5) 
            -  3.0 * Sin (2.0 * GS  - 2.0 * G5)] / [3600 * 180 / π] 
 
    λ = PL + LS 
 
    LSUN = (λ + dλ) 
 
    ∆ = Asin (Sin (LSUN) * Sin (Ε)) 
 
    RA = Acos (Cos (LSUN) / Cos (∆)) 
 
    If (∆ < 0.0) RA = 2π - RA 
 
    HA = 2π * FRC (2.0 + (rLong / 2π + RA / 2π - GST)) 
 
    If (HA > π) HA = HA - 2π 
 
    Cos (rLat) * Cos (∆) * Cos (HA)) 
 
    αz = Acos (Sin (rLat) * Sin (∆) + Cos (rLat) * Cos (∆) * Cos (HA)) 
 
    If (αz < 2.0e-8) { 
        αz = 0.0 
        If (HA <= 0.0) αa = π / 2 
          Else αa = -π / 2 
     } 
      Else { 
         αa = Cos (∆) * Sin (HA) / Sin (αz) 
         If (αa >= 1.0) αa = π / 2 
               Else If (αa <= -1.0) αa = -π / 2 
                           Else αa = Asin (αa) 
 
        If ((Sin (∆) / Sin (rLat) - Cos (αz)) > 0.0) { 
            If (αa >= 0.0) αa = π - αa 
                Else αa = -αa - π 
         } 
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